Everyday Engineering: Understanding the Marvels of Daily Life

Rated 5 out of 5 by from Very informative Stephen Ressler is my favorite CG instructor. His outgoing personality, contagious enthusiasm and obvious knowledge make the course enjoyable and informative. It was fascinating to see how all the technology around us work explained in a understandable fashion. I highly recommend any of the 4 courses that he presents.
Date published: 2020-09-17
Rated 5 out of 5 by from Great teacher I love all of his courses as an introduction to engineering.
Date published: 2020-09-14
Rated 5 out of 5 by from Really Everyday Interesting For starters anyone having a home built or buying one ought to watch this although Professor Ressler covers much more. My wife and I can't even take a walk now without checking out all the power and phone installations and lines and the streets and signal lights.
Date published: 2020-09-07
Rated 5 out of 5 by from Needed this course years ago! This is probably the most important course every person should take to understand the world around them. I am honestly so grateful for this content! Loved the delivery, loved the animation, and loved the material. Thank you very much!
Date published: 2020-08-28
Rated 5 out of 5 by from Life’s Technicalities Explained This is an excellent course that brings the technical side of daily life to an understandable perspective. There is so much of what indirectly shapes the physical events we relate to our lives that is explained by Dr. Ressler that the end result is to relieve some of the frustration that occurs when it is not understood. Dr. Ressler’s teaching style is lively, focussed on fundamentals, and makes common engineering easily understood. His teaching aids and models go a long way to simplifying and demonstrating engineering principles and are remarkably well designed and constructed. This course is highly useful and practical and should be seen by all who aspire to living an informed life.
Date published: 2020-07-16
Rated 5 out of 5 by from FUN! This is fun and informative! Any high school student can understand it. And Professor Ressler taught at West Point! Lucky cadets!
Date published: 2020-07-16
Rated 5 out of 5 by from Everyday Engineering My daughter and I, 3000 miles apart, watched each episode and then discussed it by phone. It was very enjoyable, informative. I liked the diagrams, lab models, animation, photos that gave examples. A very well organized course, clearly taught. Thanks.
Date published: 2020-07-14
Rated 5 out of 5 by from Excellent Presentation I bought this for my engineer husband who has always had a passion for his profession. He has enjoyed every moment of watching the instructor and listening to the course. My husband advised me that the professor is enormously knowledgeable and is absolutely as passionate about engineering as he is. It was a fortuitous purchase and very much appreciated as a Father's Day gift.
Date published: 2020-07-06
  • y_2020, m_9, d_20, h_15
  • bvseo_bulk, prod_bvrr, vn_bulk_3.0.12
  • cp_1, bvpage1
  • co_hasreviews, tv_16, tr_214
  • loc_en_CA, sid_1116, prod, sort_[SortEntry(order=SUBMISSION_TIME, direction=DESCENDING)]
  • clientName_teachco
  • bvseo_sdk, p_sdk, 3.2.1
  • CLOUD, getReviews, 3.62ms
Everyday Engineering: Understanding the Marvels of Daily Life
Course Trailer
Engineering and Technology in Your World
1: Engineering and Technology in Your World

Start the course by considering how engineering and technology influence your daily life-not just high-tech devices but also ordinary machines, buildings, and infrastructure that most people take for granted. In this lecture series you will learn to notice and understand these overlooked marvels....

31 min
Your House as an Engineered System
2: Your House as an Engineered System

In the first of four lectures on your house as a technological system, review the eight engineered subsystems that go into modern dwellings. Then discover the miracle of building codes, which ensure that every new house is safe, constructible, and reasonably economical without involving an engineer in each design....

28 min
Three Structural Systems for Load Bearing
3: Three Structural Systems for Load Bearing

Examine one of the most important aspects of modern building codes: the design of a house for structural load carrying. Focus on two of the three major approaches to this crucial function: bearing wall construction and heavy timber frame construction. Both have been used for thousands of years....

33 min
Platform-Framed Housing Construction
4: Platform-Framed Housing Construction

Turn to the third major technique for building a house: platform-framed construction, which is a flexible arrangement of lightweight modular floor platforms, wall panels, and roof trusses. This efficient approach has been widely used in the U.S. for over a century....

35 min
The Building Envelope
5: The Building Envelope

Now that your house is framed, it needs a building envelope that can shed rainwater and melting snow, and also keep precipitation from entering through the foundation. Learn about the five integrated layers of protection: shingles and cladding, drainage plane, insulation, vapor barrier, and drywall....

29 min
Site Design and Storm Runoff
6: Site Design and Storm Runoff

What happens to the precipitation that falls on your house, your lot, and your neighbors' properties? Study the problem of site design, focusing on how storm runoff is directed away from homes and returned to a natural watercourse, without causing flooding along the way....

29 min
Dam, Reservoir, and Aqueduct Design
7: Dam, Reservoir, and Aqueduct Design

Now consider the water that you want in your house-for drinking, cooking, and bathing. Examine the technologies that collect water from a watershed and transport it to a municipality. Explore different designs for dams, and marvel at the Catskill Aqueduct that carries fresh water to New York City....

33 min
Water Treatment and Distribution
8: Water Treatment and Distribution

Learn how raw water from nature is treated to make it safe for drinking. Then trace the distribution system that supplies water under pressure to users. Professor Ressler demonstrates two crucial technologies in this system: the flocculation chamber and the water tower....

29 min
Wastewater Disposal and Treatment
9: Wastewater Disposal and Treatment

What happens to the 150 gallons of water that the average person uses and then sends down the drain each day? Delve into wastewater disposal and treatment. Among the details you investigate are the S-shaped trap in a waste pipe and that most ingenious of plumbing fixtures: the toilet....

30 min
Fossil Fuels: Coal, Oil, and Natural Gas
10: Fossil Fuels: Coal, Oil, and Natural Gas

Coal, oil, and natural gas power the vast majority of electrical generating plants in use today. Learn how fossil fuels are extracted from the earth and how new technologies such as longwall mining and fracking have revolutionized the industry. Also examine some of the environmental drawbacks of these endeavors....

30 min
Power Generation from Coal
11: Power Generation from Coal

Focus on the dominant source of electricity in the U.S. today: coal. Begin by reviewing concepts from thermodynamics that explain how power plants work. Then follow the processes that turn a hopper full of coal into abundant electrical power, extracting the maximum amount of energy along the way....

31 min
Oil, Gas, and Nuclear Power
12: Oil, Gas, and Nuclear Power

Probe the tradeoffs of oil, natural gas, and nuclear fission for generating electrical power. For example, natural gas is plentiful and flexible, but it involves fracking and produces carbon dioxide emissions. By contrast, nuclear power produces essentially zero emissions but poses potentially catastrophic safety risks....

30 min
Renewable Sources of Electricity
13: Renewable Sources of Electricity

Survey the three most important sources of renewable energy: hydropower, wind power, and solar power. Look at the inner workings of hydroelectric dams, wind turbines, solar-thermal power stations, and photovoltaic arrays to see how each takes a renewable energy source and converts it into electricity....

32 min
Electrical Power Transmission: The Grid
14: Electrical Power Transmission: The Grid

Study the technological marvel called the grid-the system that transmits electricity from its point of generation to users. Learn why electrical transmission lines come in threes, why AC power is used instead of DC, and the reason transmission voltages are so high....

34 min
Electrical Power Distribution
15: Electrical Power Distribution

Trace the distribution of electrical power from a substation to your home. Begin with the transformer, discovering how this crucial device functions. By the end of this lecture, you will be able to read a utility pole like a book, analyzing the different services attached to these ubiquitous structures....

30 min
Everyday Thermodynamics: Refrigeration
16: Everyday Thermodynamics: Refrigeration

Unravel the secret of refrigeration by focusing on the connection between heat, temperature, work, and energy. Then see how these thermodynamic concepts apply to the vapor-compression cycle in your refrigerator or air conditioner. Discover that a heat pump operates the same way....

31 min
Heating, Ventilating, and Air-Conditioning
17: Heating, Ventilating, and Air-Conditioning

Explore heating, ventilating, and air conditioning-known as HVAC. Begin by learning how thermostats regulate temperature. Then review how heat transfer takes place, and investigate the pros and cons of heating with a furnace, boiler, and heat pump. See how air conditioning integrates into each of these systems....

30 min
Home Energy Efficiency
18: Home Energy Efficiency

Delve into the green building movement, which promotes structures that use natural resources more efficiently while reducing environmental impact. Focus on minimizing energy consumption through a well-insulated, airtight building envelope; energy-efficient windows and doors; and energy-efficient HVAC systems and appliances....

33 min
Passive Solar and Net-Zero-Energy Homes
19: Passive Solar and Net-Zero-Energy Homes

How much energy can you save with a properly designed house? Would you believe all of it? Trace the trend in passive solar and net-zero-energy homes that are engineered to stay comfortable year-round by exploiting sunlight in winter and shielding against it in summer, with minimal operating costs....

32 min
The Plain Old Telephone Service
20: The Plain Old Telephone Service

Begin the first of four lectures on telecommunications technology by tracking the landline telephone system, known in the trade as "plain old telephone service." Follow the pair of copper wires from your landline phone to the multi-pair cables strung from power poles to the all-important local exchange and beyond....

30 min
The Global Telecommunications Network
21: The Global Telecommunications Network

Investigate the beauty and complexity of the public switched telephone network (PSTN). Optimized for transmission of the human voice, it comprises a vast array of conventional phone lines, fiber-optic cables, microwave links, and other media. Trace its evolution to the remarkable system in use today....

31 min
Cellular Phone Technology
22: Cellular Phone Technology

Why is cell phone service sometimes so unpredictable? Get inside the cellular network to learn how clever engineering makes a surprisingly large number of two-way conversations possible over a very narrow broadcast spectrum. Also see how the system leads to dead spots, dropped calls, and other familiar cell phone hassles....

30 min
Satellites and Satellite Communications
23: Satellites and Satellite Communications

Take wireless communications to a higher level: space. First master the rudiments of rockets, orbits, and satellite operations. Then focus on commercial satellite services such as television, radio, Internet, telephone, and navigation. Calculate the ideal orbit for communications satellites, and investigate the workings of the Global Positioning System....

32 min
Simple Machines around the House
24: Simple Machines around the House

Nothing embodies everyday engineering like simple machines-the basic mechanical devices used for thousands of years that we rely on more than we may realize. Probe the wonders of the inclined plane, screw, wedge, lever, wheel-and-axle, and pulley, and ponder their myriad applications....

33 min
User-Centered Design
25: User-Centered Design

Using the faucet as an example, study the bewildering number of ways that hot and cold water can be delivered into a sink, reflecting the challenges of designing everyday things. Along the way, consider the principles that go into a successful design: affordances, signifiers, mapping, constraints, and feedback.

30 min
The Internal Combustion Engine
26: The Internal Combustion Engine

Begin the first of four lectures on automotive engineering by exploring that marvel of mechanical sophistication: the internal combustion engine. Professor Ressler uses homebuilt models to demonstrate the ingenious design of the four-stroke power cycle and how it works in perfect synchrony with a host of other engine sub-systems....

31 min
Torque, Power, and Transmission
27: Torque, Power, and Transmission

Trace the path of mechanical power from pistons to the engine crankshaft, then through the flywheel and clutch assembly to the transmission gearbox. Focus on the relationships between torque, rotational speed, and power, discovering the reason that transmissions require multiple gear ratios....

31 min
The Drivetrain
28: The Drivetrain

Follow the transfer of automotive power from the gearbox through the driveshaft to the differential and drive-wheels. Study working models of the universal joint and differential. Also explore the design of front-wheel drive, and peer inside an automatic transmission to expose the miracle of its smooth operation....

35 min
Suspension, Steering, and Braking
29: Suspension, Steering, and Braking

Conclude your survey of automotive engineering by studying the three systems that control a vehicle: suspension, steering, and braking. Begin with the technology that's vital to all three: your tires. Close by analyzing the antilock braking system (ABS), learning how it works and how it knows when to engage....

33 min
Highway Engineering
30: Highway Engineering

Step into the work boots of a highway engineer, tasked with designing a freeway across hilly terrain to connect two other highways. Discover that features of a safe road that you take for granted-constant-radius curves, gentle grade, sturdy construction, and a well-drained surface-require detailed planning....

31 min
Traffic Engineering
31: Traffic Engineering

Traffic engineers help to ensure the safe and efficient movement of vehicles and pedestrians within a road system. Focus on their approach to intersection design, examining the many factors that go into determining whether you're faced with a traffic signal, an overpass, a flyover ramp, or some other means of traffic control....

30 min
Everyday Bridges
32: Everyday Bridges

Find that everyday highway overpass bridges are more interesting than they appear. These ubiquitous structures deserve to be admired for their simplicity and practicality. Plunge into the principles of multi-girder spans, and learn that new construction techniques make highway bridges more efficient and elegant than ever....

35 min
Tunnel Engineering
33: Tunnel Engineering

Delve into tunnel engineering, a discipline every bit as impressive as bridge building, only less visible. Consider the challenges presented by the type of soil or rock being excavated for a tunnel, marvel at the work of mammoth tunnel boring machines, and weigh the tradeoffs between tunnels versus bridges....

30 min
The Railroad
34: The Railroad

Ride the rails to learn why rail transportation continues to thrive, two centuries after the modern railroad was introduced. Trace the origin of the standard rail gauge used in the U.S., probe the forces a locomotive must overcome to get rolling and then stop, and chart the rise of a revolutionary way of handling cargo: the intermodal container....

32 min
Solid Waste Disposal and Recycling
35: Solid Waste Disposal and Recycling

Compare the three main methods of dealing with the 700,000 tons of solid waste generated every day in the U.S.: landfill, incineration, and recycling. Explore the distinction between recycling, which is practical with many metals, and down-cycling, which is the fate of most plastics....

31 min
The Future: Engineering for Sustainability
36: The Future: Engineering for Sustainability

Look beyond recycling to the higher goal of sustainability. Then close the course by considering the Great Northeast Blackout of 2003. Caused by inadequately pruned trees and a software bug, this cascading sequence of infrastructure failures holds important lessons for the world of everyday engineering....

36 min
Stephen Ressler

In over two decades as a teacher, I've never experienced anything quite like commitment of The Great Courses to rigor in the course development process and uncompromising production quality in the studio.


Lehigh University


United States Military Academy, West Point

About Stephen Ressler

Dr. Stephen Ressler is Professor Emeritus from the United States Military Academy at West Point and a Distinguished Member of the American Society of Civil Engineers (ASCE). A registered Professional Engineer in Virginia, he earned a B.S. from West Point and an M.S. and a Ph.D. in Civil Engineering from Lehigh University, as well as a Master of Strategic Studies from the U.S. Army War College. Professor Ressler's papers on engineering education have won seven Best Paper awards from the American Society for Engineering Education (ASEE). Professor Ressler has also won numerous awards from the ASCE, including the President's Medal and the 2011 Outstanding Projects and Leaders Award-the organization's highest award. His other accolades include the Bliss Medal for Outstanding Contributions to Engineering Education from the Society of American Military Engineers and the Norm Augustine Award for Outstanding Achievement in Engineering Communications from the American Association of Engineering Societies. Professor Ressler served for 34 years as a commissioned officer in the U.S. Army Corps of Engineers and retired at the rank of Brigadier General in 2013. While on active duty, he served in a variety of military engineering assignments around the world. He is also a developer and principal instructor for the Excellence in Civil Engineering Education Teaching Workshop, which has trained more than 500 civil engineering faculty members from more than 200 colleges and universities.

Also By This Professor