The Science of Extreme Weather

Rated 5 out of 5 by from Fascinating course Living in Kansas all of my life, I have experienced all types of extreme weather except tropical cyclones, so I found this to be the most interesting course I have done. Mr. Snodgrass' lectures were very easy to listen to and the background with rain, snow and even a tornado at the end made the course even more enjoyable for me. Truly a "great course."
Date published: 2020-10-07
Rated 4 out of 5 by from A real surprise! In high school, we never thought Ol' Vernal would amount to much, but there it was on the calendar, "Vernal Equinox." I guess Autumna must be his sister.
Date published: 2020-09-21
Rated 5 out of 5 by from Excellent Information in an Enthusiastic Format I found this course to be fascinating. My understanding of complex factors and causes of extreme weather has greatly increased. Since the focus is on "extreme weather", I did not expect a full course on meterorology, but I think sufficient, if not more than sufficient, information contributing to extreme weather events are included. The course has greatly enhanced my knowledge of global weather patterns, influences of geological features on land and of ocean currents on weather, and the fact that all factors interact with incredible complexity to produce the weather required for life on earth. Lectures provide information regarding many technical developments in the last 20 years for their contributions to knowledge of weather details and the ability to predict weather events with greater accuracy. My educational background is in chemistry (M.S.), so I am very familiar with fact filled, very detailed technical lectures. However, I think point of this course is to provide a reasonably educated person, who happens to be a bit of weather junkie, with information about extreme weather. I expected enthusiasm, as well as respect, for extreme weather to be conveyed, and that is how these lectures are presented. The campy, sort of science fiction looking set (1970ish appearance?) adds a bit of fun to the overall atmosphere of the course, I think, and I can understand why the professor was a favorite lecturer to students. (As a resident of Chicagoland for the past 25 years and mom of a UIUC grad, I also enjoyed examples presented of Midwest weather events, many of which I remember. Photo of car completely buried by Groundhog Day 2011 blizzard is attached.) Meanwhile, information presented about meteorology in the course is dead on serious. Maybe the presentation is not to everyones taste, but for me the idea was simple. If you are fascinated by weather, then enjoy the enthusiastic vein in which these lectures are presented, and take note of the serious details included as well. Exercises at the end of each chapter in the guide book are very helpful, and the list of resources provided for more detailed information is excellent.
Date published: 2020-08-02
Rated 5 out of 5 by from exceeded expectations This is a good introduction to meteorology. Anyone interested in the weather should enjoy this course. The production values are high.
Date published: 2020-06-21
Rated 5 out of 5 by from The extreme side of nature I used to live in Texas / Oklahoma & wondered what caused some of the storms they get there. Now I know more about it.
Date published: 2020-05-02
Rated 3 out of 5 by from It has remeeming features I purchased this course a few weeks ago with the anticipatin of increasing my knowledge of meteorology while preparing to teach a course in an Earth Science overview for Elementary Education Majors (my background is in physics). I have finished the first eight videos. The professor's presentation is excellent, but I think that this "cockpit" where he lectures is distracting. I wished that he just used a regular lecture room. To me, it cheapens the course! Also, I am trying to figure out what background this course assumes in for its viewers. I have taken a regular meteorology course, so I am well aware of assumptions this professor makes, but I don't know if it would be appropriate for someone with no background in meteorology or physics. When discussing satellites and radar, I felt that there was too much stress on the "Ghee Whiz", rathar than the principles. When I purchased the course, I had planned on passing it on to a friend who has very limited scientific background, but not I will just give it to her with a big caveat.
Date published: 2020-02-04
Rated 5 out of 5 by from Excellent Overview of the Science Behind Weather I greatly enjoyed the course 'The Science of Extreme Weather'. Professor Eric Snodgrass is very dynamic in his delivery and presents the information in a very thorough and clear way. This course is not as technical as the Great Courses other Lecture set on Weather but this instructor delivers each lecture with passion and depth so the student obtains a complete understanding of the process that creates the specific extreme weather disturbance being considered. Excellent course and Professor! I have purchased well over 300 lectures sets and consider this one in the top tier!
Date published: 2019-11-20
Rated 5 out of 5 by from As always wonderful. They select the best lecturers and they instruct the courses perfectly.
Date published: 2019-11-19
  • y_2020, m_10, d_30, h_16
  • bvseo_bulk, prod_bvrr, vn_bulk_3.0.12
  • cp_1, bvpage1
  • co_hasreviews, tv_4, tr_59
  • loc_en_CA, sid_1771, prod, sort_[SortEntry(order=SUBMISSION_TIME, direction=DESCENDING)]
  • clientName_teachco
  • bvseo_sdk, p_sdk, 3.2.1
  • CLOUD, getReviews, 3.74ms
  • REVIEWS, PRODUCT
The Science of Extreme Weather
Course Trailer
Extreme Weather Is Everywhere
1: Extreme Weather Is Everywhere

Survey the remarkable range of extreme weather around the planet. Then consider: Why does Earth have weather at all? Professor Snodgrass introduces basic features of the atmosphere that naturally lead to severe weather. He concludes by outlining the goals of the course-among them, preparedness.

36 min
Temperature Extremes and Cold-Air Outbreaks
2: Temperature Extremes and Cold-Air Outbreaks

Discover the origin of Earth's great variability in air temperature, and learn how it also explains the seasons. Search for the highest and lowest temperatures on the planet, and the locations with the greatest difference between highs and lows. Along the way, encounter the deadliest weather on Earth.

33 min
Low Pressure and Earth's High Winds
3: Low Pressure and Earth's High Winds

Witness a demonstration of the power of air pressure and the ability of changing pressure to produce clouds. Learn how fluctuations in air pressure play a role in all weather, propelling everything from the ferocious winds of a tornado to the incredible speeds of the jet stream.

32 min
Extreme Humidity, Rain, and Fog
4: Extreme Humidity, Rain, and Fog

Severe weather is driven by water's ability to change phase-with energy being released during the transition from vapor to liquid, and from liquid to ice. Calculate the stupendous amount of energy brewing in a typical thunderstorm, and study cases of extreme humidity, rain, and fog.

33 min
How Radar Reveals Storms
5: How Radar Reveals Storms

In this and the next lecture, study the advanced technology that has revolutionized extreme weather forecasting. Here, look at how radar has vastly improved the prediction of tornadic thunderstorms. You've seen Doppler radar images in forecasts. Now learn how this all-important tracking tool works....

32 min
How Satellites Track Severe Weather
6: How Satellites Track Severe Weather

Venture into space to see how different types of weather satellites chart large-scale extreme weather systems in both daylight and darkness. Compare two nearly identical hurricanes-one in 1900, the other in 2008-to highlight the life-saving capability of orbiting weather stations.

34 min
Anatomy of a Lightning Strike
7: Anatomy of a Lightning Strike

Moment for moment, the one billion volts discharged in a typical lightning strike may be the most extreme of all weather phenomena. Watch lightning unfold in super-slow motion, and gain an appreciation for the exquisite complexity of this electrifying event.

30 min
Lightning Extremes and Survival
8: Lightning Extremes and Survival

Investigate positive polarity lighting-a bolt up to ten times more powerful than normal lightning-which accounts for five percent of cloud-to-ground strikes. Then hear life-saving tips on how to recognize when you are about to be hit by lightning and what you should instantly do.

29 min
Thunderstorm Formation and Weather Balloons
9: Thunderstorm Formation and Weather Balloons

Begin a series of lectures on thunderstorms, which are the key to understanding many types of extreme weather. Learn how thunderstorms are forecast, and explore their formation by following a weather balloon on its data-gathering mission through the atmosphere.

33 min
Wind Shear and Severe Thunderstorms
10: Wind Shear and Severe Thunderstorms

Wind shear is the ingredient that turns an ordinary thunderstorm into a monster. Study the mechanisms that underlie this transformation. Then evaluate the crucial difference between a severe weather watch versus a warning, and put yourself in the shoes of a forecaster calling the shots.

33 min
Squall Line Thunderstorms and Microbursts
11: Squall Line Thunderstorms and Microbursts

Heralded by an ominous-looking formation called a shelf cloud, a squall line is a group of thunderstorms that produces intense, destructive winds. Analyze the anatomy of a squall line, so that you know what to expect next time a shelf cloud approaches. Also investigate microbursts, another dangerous product of thunderstorms.

33 min
Supercell Thunderstorms and Hail
12: Supercell Thunderstorms and Hail

Pound for pound, the supercell is the most powerful thunderstorm on Earth. Explore the mechanics of this system, which produces the strongest straight-line winds, the most violent tornadoes, and the largest hail. Close by looking at the formation of a record-breaking hailstone weighing almost two pounds!

31 min
Tornadoes and Their Amazing Winds
13: Tornadoes and Their Amazing Winds

Tornadoes hit all 50 states of the U.S. and most inhabited regions of the world. Blowing as fast as 200 to 300 mph, they are the most awe-inspiring of extreme weather. But what exactly are they? And why are they more prevalent in some areas than others? Probe tornado facts and myths, and survey some of the deadliest tornadoes of our times.

32 min
Tornadogenesis and Storm Chasing
14: Tornadogenesis and Storm Chasing

The genesis of tornadoes takes place under complex conditions that are still being deciphered by meteorologists who make detailed measurements from up close. Go inside a supercell thunderstorm to see a tornado being spawned. Then learn tornado safety tips and the precautions that professional storm chasers take.

31 min
Mountain Windstorms and Avalanches
15: Mountain Windstorms and Avalanches

Study the impact of mountains on weather by investigating the Chinook winds, which can race down the east face of the Rocky Mountains with tornadic force. Also look at the Santa Ana winds of southern California, notorious for fanning the region's wildfires. Then explore another aspect of extreme mountain weather: avalanches.

32 min
Ice Storms: Freezing Rain Takes Over
16: Ice Storms: Freezing Rain Takes Over

Begin the first of three lectures on winter weather by pinning down the cause of ice storms, which are beautiful but also dangerous and destructive. Professor Snodgrass demonstrates how supercooled water is the source of the freezing rain behind these perilous storms.

31 min
Epic Snowfall and the Lake Effect
17: Epic Snowfall and the Lake Effect

The region downwind from the Great Lakes is famous for its lake effect snowstorms, which can total more than 200 inches of snow per year for some locations. Examine the factors behind this phenomenon as well as the mortal danger posed by blizzards, as shown by the tragic Children's Blizzard of 1888.

30 min
Blizzards and Winter Cyclones
18: Blizzards and Winter Cyclones

Look back at historical blizzards that paralyzed major U.S. cities. Then probe the official definition of a blizzard, the cold-weather cyclone systems that create them, and the revolution in forecasting blizzards since 1993. Focus on the role of the jet stream, and dispel a common misunderstanding of the polar vortex.

32 min
Flash Floods and Deadly Moving Water
19: Flash Floods and Deadly Moving Water

Consider the deadly power of moving water. Explore scenarios for extreme flooding in flood-prone regions of the U.S. and consider past cases of extreme coastal floods, river floods, and flash floods. Study the meteorology behind these events, and hear flood safety tips.

31 min
Drought, Heat Waves, and Dust Storms
20: Drought, Heat Waves, and Dust Storms

From the American dust bowl of the 1930s to the relentless expansion of the Sahara in Africa, drought represents severe weather that can stretch out for years. Explore what's going on in the atmosphere to create extreme drought, which is associated with heat waves and dust storms.

33 min
Where Hurricanes Hit
21: Where Hurricanes Hit

Begin the first of three lectures on tropical cyclones, known as hurricanes, typhoons, or cyclones depending on where they occur. Plot the historical tracks of these gigantic storms, sharpen your understanding of how they are named, and focus on tropical cyclones that were so notorious that their names have been retired.

32 min
The Enormous Structure of a Hurricane
22: The Enormous Structure of a Hurricane

How do hurricanes get so big? Start off the coast of West Africa to see how this region is the perfect breeding ground for low-pressure disturbances. Chart the role of the Coriolis force, water temperature, and other factors that must coincide for these systems to grow into hurricanes threatening the U.S.

32 min
Storm Surge and Hurricane Intensification
23: Storm Surge and Hurricane Intensification

Hurricanes destroy life and property in four ways: through storm surge, inland flooding, high winds, and embedded tornadoes. Consider examples of each. Then focus on high water as the deadliest factor, responsible for 80% of all hurricane fatalities.

33 min
El Nino and Cycles of Extreme Weather
24: El Nino and Cycles of Extreme Weather

Close by investigating one of the most eventful weather triggers of all: the El Niño-Southern Oscillation, which starts as a warming trend in the eastern Pacific and can lead to extreme weather throughout the world. Our detailed understanding of this once-mysterious phenomenon, as well as other extreme weather cycles, shows how far the science of meteorology has come.

41 min
Eric R Snodgrass

The science of extreme weather is one of the great triumphs of our time. And I would like everyone to understand how we got here and how to benefit from these advances in case of emergencies.

ALMA MATER

University of Illinois, Urbana-Champaign

INSTITUTION

University of Illinois, Urbana-Champaign

About Eric R Snodgrass

Eric R. Snodgrass is the Director of Undergraduate Studies for the Department of Atmospheric Sciences at the University of Illinois at Urbana-Champaign, where he also received his master's degree. Previously, he earned his bachelor's degree in Geography from Western Illinois University. Each year, Professor Snodgrass guides more than 1,500 University of Illinois students through the wild side of weather in his popular course Severe and Hazardous Weather. He also teaches General Physical Meteorology, Meteorological Instrumentation, and Economics of Weather, and he advises all undergraduate majors and minors in the department, widely recognized as one of the best meteorology programs in the nation. Professor Snodgrass's research initiatives focus on K-12 science education as well as weather forecasting applications in financial markets. He is a cofounder of Global Weather and Climate Logistics, a private company that advises weather-sensitive financial institutions. His company merged with Agrible, a precision farm management and predictive analytics company, where he is also a cofounder and principal atmospheric scientist. At the University of Illinois, Professor Snodgrass has received the College of Liberal Arts and Sciences Award for Excellence in Undergraduate Teaching and the Campus Award for Excellence in Undergraduate Teaching. In addition, his online version of Severe and Hazardous Weather was named the best online course of 2012 by the University Professional and Continuing Education Association. His current research deals with weather risk involving landfalling tropical cyclones and global agricultural yield projections.

Also By This Professor